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Abstract  

Three individual ML modules are developed in the AISA project to study a shared situational 
awareness of AI and ATCOs. This deliverable describes the design, development and validation of the 
ML trajectory prediction module. It aims at predicting the true aircraft track and future positions of 
flights with the initially filed flight plan and the current aircraft state as input. Therefore a two-step 
process is established. First a neural network is trained to predict the static aircraft track without any 
prediction in the time domain. Afterwards the current aircraft state is combined with the predicted 
track to determine a concrete future position prediction. ADS-B data from The OpenSky Network and 
flight plan data from the DDR2 database from EUROCONTROL is going to be used as database.  
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Purpose 

In WP3 three individual ML modules were developed to be further studied in the field of shared 
situational awareness in the AISA project: Trajectory prediction module, conflict detection module 
and air traffic complexity module. This deliverable D3.1 describes the main objectives, development 
and an initial validation of trajectory prediction module. Besides presenting the results of module 
development to interested audiences, this report delivers background-information about the 
trajectory prediction module to upcoming research in the AISA project.  

 

Intended Audience 

There are two main groups of the intended audience: 

• Experts from the related fields, 

• The AISA consortium. 

The development of trajectory prediction module via AI SA deliverable (AISA D.3.1) is important for 
the consortium as: 

• In the framework of WP3, it develops one of the ML modules for the AISA project.  

• The document will provide direct input to the other technical work packages (WP3, WP4, 
WP5) and the related deliverables, by providing the trajectory prediction module developed 
based on ML techniques.  

The document is also useful for external stakeholders, especially the following ones: 

• Air Traffic Management (ATM) system developers who would like to understand how AI, and 
particularly ML techniques, can be integrated into ATM, 

• ATM experts conducting related research, 

General automation and AI experts would like to see the possible use of AI in a new domain. 

 

Associated documentation 

The document is linked to several AISA and ATM documents; here, only the most relevant ones are 
listed: 

• AISA D2.1: Concept of Operations for AI Situational Awareness System [1].  

• AISA D2.2: Requirements for automation of monitoring tasks via AI SA [2]. 

• AISA D3.2: Conflict detection module [3].  

• AISA D3.3: Air traffic complexity module [4].  
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Terminology 

Following table lists the abbreviations used in this document.  

Abbreviation Description 

ADS-B Automatic Dependent Surveillance Broadcast 

AI Artificial Intelligence 

AISA Artificial Intelligence Situational Awareness 

ATCO Air Traffic Control Officer 

ATM Air Traffic Management 

ETA Estimated Time of Arrival 

GA Grant Agreement 

ML Machine Learning 

TFR Temporary Flight Restriction 

TP Trajectory Prediction 

WP Work Package 
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1 Introduction 

Three individual machine learning modules will be developed in the AISA project to conduct studies 
about a shared situational awareness of AI and ATCOs. Besides a conflict detection module [3] and an 
airspace complexity module [4], this deliverable describes the development, implementation and 
validation of the trajectory prediction module. When it comes to predicting future aircraft states, 
various studies have been conducted on diverse parameters: [5] introduces a machine learning 
approach to predict the aircraft mass for optimal climb prediction and in [6] machine learning 
algorithms are trained to predict the aircraft speed, also for climb predictions. [7] suggests a 
combination of clustering and following modelling with a neural network to predict the ETA of flights. 
An extensive approach of predicting 4D trajectories with meteorological datasets as additional input 
is described in [8]. The finally applied trajectory prediction method described in this deliverable 
follows some similarities proposed in [8]. For example does the trajectory prediction used in AISA 
also deploy flight plans as a basis-input and a neural network is implemented as part of the 
prediction method. But whereas the previous study applied a comprehensive approach with multiple 
input datasets and a large geographical region for predicting the trajectories, the approach in this 
deliverable tries to follow a bottom-up-approach to develop a simple and easy to use trajectory 
prediction in a small scale region.  

When it comes to aircraft trajectory prediction the problem can grow to a comprehensive task, 
especially when dealing with four dimensional position predictions. This means, when predicting 4D 
trajectories, in general consecutive sets of four dimensional state-vectors need to be predicted. Due 
to the limited resources and to minimize the risk of running into complexity problems at the end of 
the development-period, a bottom-up-approach is followed in this projects task. The starting point is 
the decision to use flight plans of DDR2 database [9] and ADS-B data from The OpenSky Network ( 
[10] and [11]) as input. Differences in the initially filed flight plans (DDR2) and the finally flown 
trajectory (ADS-B) shall be predicted with the developed module. These trajectory deviations can 
have various reasons: for example directs due to low traffic congestion, re-routings required to 
resolve trajectory conflicts, TFRs, etc.  

After introducing the TP (Trajectory Prediction) concept and the general data flow with the applied 
technologies, the initial gathering of raw ADS-B data and pre-processing is described and analysed. 
This includes a simple stochastic approach to obtain adequate ADS-B request-queries for the impala 
shell of the historical database from The OpenSky Network with previously gathered DDR2 flight 
plans as basis. Following two different approaches to predict track changes between DDR2 and ADS-
B data with a neural network in a static manner are implemented and assessed. As this static 
prediction approach does not take any temporal information into account, a second prediction step 
is designed with the current aircraft state as input. Thereby a concrete future position prediction is 
generated by applying an aircraft fixed pattern. The corresponding altitude is afterwards predicted 
by mapping the planned altitude level of the flight plans to the predicted position and correcting it 
with the known prediction errors from previous altitude predictions. Finally the results of the 
established trajectory prediction method are validated regarding the true future position obtained 
from the ADS-B data, which has also been used to train the neural network and for the current 
aircraft state as input for the second step of the prediction process.  
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2 TP concept and data flow 

A completely defined aircraft trajectory comprises four dimensions: one dimension for time and 
three dimensions for position definition. This makes it a complex field to predict en-route segments 
of aircraft. In contrary arrival predictions only comprise one dimension: time. When predicting the 
arrival-time of an aircraft, the arrival-airport is generally known and therefore the highly potential 
final position is known in advance. To scale down the complexity in the task of en-route trajectory 
prediction, the time-dimension will be excluded in a first step. Furthermore the positions will only be 
assessed in the horizontal plane and positions will be discretized by waypoint-definitions. Besides 
adapting the position-definition into discrete waypoint-probability values for feeding and training 
neural networks, the fixed waypoint discretization also facilitates a simple static information-delivery 
in the first approach.  

 

Figure 1: Deviation between flight plan and flown track (ADS-B)1 

When comparing initially filed flight plans and actually flown trajectories in the horizontal plane, 
deviations may be observed in some cases (see Figure 1). These deviations can have various reasons: 
a pilot for example may request a direct to skip certain future waypoints in low congested areas to 

 

 

1 Screenshots are taken from the AirTrafficTool, which has been developed at TU Braunschweig and is used in 
AISA in the framework of Background IPRs.  

ADS-B 

Flight Plan (DDR2) 

deviation 
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shorten the flight or an ATCO may request an aircraft to fly an alternate route to solve a conflicting 
situation with other aircraft. Also the weather-situation may impose necessities to re-route. Other 
planned re-routings not mapped in the filed flight plan may comprise TFRs (e.g. activated military 
areas). These deviations between the filed flight plan and the actually flown trajectory is where the 
concept of the AISA-TP module is deposited. A filed flight plan, known in advance as a scheduled 
flight, will be the input for a neural network. The neural network shall then model the probability of 
overflying or skipping certain waypoints in its outputs. For collocation of the actually flown trajectory 
and to compile the real waypoint-probabilities for training datasets, ADS-B data will be used. 
Previous studies on ADS-B data of the historical database of The OpenSky Network indicated some 
gaps in the receiver coverage and various data-faults and misleading trajectory-segments. Therefore 
a data parser was developed previously to the AISA project at the Institute of Flight Guidance at TU 
Braunschweig to address these issues in a pre-processing step [12].2 The overall data-flow of training 
the neural networks with the ADS-B data parser for pre-processing is depicted in Figure 2. The pre-
processed ADS-B data and DDR2 data are fed into data processing routines running in MATLAB with 
implemented Java algorithms for a better performance. These data processing routines map the 
flights of DDR2 and ADS-B data, compile discrete waypoint-probability values and generate data-sets 
for training and testing the neural networks. The neural networks are implemented in Python and 
TensorFlow. The operational process of the TP module differs from the data-flow and -processing 
during training, see Figure 3. With the initially filed flight plan the neural network is fed to obtain the 
waypoint probability grid. Afterwards these probability values are processed in a MATLAB-module 
with embedded Java-algorithms to calculate a concrete predicted future position of the aircraft. This 
step needs the actual aircraft state as input (e.g. taken from received ADS-B data).  

 

 

 

2 The ADSbDataParser is used within AISA in the framework of Background IPRs.  
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Figure 2: Data flow for neural network training 

 

 
Figure 3: Data flow of operational trajectory prediction with actual aircraft state as input 
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3 ADS-B data gathering, pre-processing and 
statistics 

The ADS-B data used for the TP module is gathered from the historical database of The OpenSky 
Network [10]. It is accessed via an Impala Shell SSH connection and various data tables of collected 
ADS-B messages can be requested. For the development of TP module, decoded ADS-B data of table 
state_vectors_data4 is going to be used. The structure of this data table is shown in Table 3-1.  

Log-files of the SSH connection of this data format are directly processed by the ADS-B data parser. 
Thereby each aircraft needs to be stored separately within an individual SSH log-file and the data 
parser achieves best results, when the whole trajectory of a flight is available. This means that for 
each gathered trajectory a precise request query with adequate start and end timestamps is 
required. General request-timeframes covering the whole AIRAC cycle would not be precise enough, 
as callsigns may be re-used for various flights and therefore multiple flights could be concatenated in 
one request. This concatenation of multiple flights in one log-file currently can’t be handled by the 
data parser without any errors.  

The list of callsigns and corresponding timeframes (departure and arrival) is derived from initial DDR2 
flight plans (model 1) [9]. Due to departure- and arrival-delays or early power-on of ADS-B 
transmissions previous to departure, effective timeframes of ADS-B and DDR2 data may vary. Hence 
a small study about standard deviation was conducted for flights crossing the sector LSAZM567 used 
in the AISA project on 20.06.2019.  

To gather the trajectories of this test dataset, an offset of four hours previous to departure and four 
hours after arrival regarding the DDR2 data was used. It was assumed and confirmed later on, that 
this offset of four hours is sufficient to comply with most of the flights to be within the timeframe. 
After gathering the test-data, it is processed by the ADS-B data parser and finally the standard 
deviation of arrival- and departure-time between DDR2 data (model 1) and the parsed ADS-B 
trajectories is analysed. Regarding departure a stochastic expectancy value of 𝜇 = 22.54 𝑚𝑖𝑛. and a 
standard deviation of 𝜎 = 52.42 𝑚𝑖𝑛. was derived from the initial test-dataset. For arrival the 
expectancy value is 𝜇 = 4.87 𝑚𝑖𝑛. and the standard deviation is 𝜎 = 43.03 𝑚𝑖𝑛. Hence with a 
probability of 99.73 % the ADS-B data will be within a timeframe offset of (22.54 − 3 ⋅
52.42) 𝑚𝑖𝑛.= −134.72 𝑚𝑖𝑛. for departure and (4.87 + 3 ⋅ 43.03) 𝑚𝑖𝑛.= +133.96 𝑚𝑖𝑛. for arrival. 
This confirms the initial temporary timeframe offset of four hours for this analysis and the new 
timeframe offset [−134.72 𝑚𝑖𝑛. ; +133.96 𝑚𝑖𝑛. ] with a confidence interval of 99.73 % was used to 
gather all ADS-B trajectories available in the AIRAC cycle 1907, which cross the chosen sector 
(LSAZM567).  

name type description 

time int UTC timestamp of sample 
icao24 string ICAO24 identifier 

lat double latitude position 

lon double longitude position 

velocity double speed over ground 

heading double track angle 

vertrate doubler vertical rate in m/sec 
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callsign string callsign 

onground boolean broadcasted indicator of surface/ airborne position 

alert boolean alert indicator 

spi boolean spi indicator 

squawk string transponder code 

baroaltitude double barometric altitude 

geoaltitude double geometric altitude 

lastposupdate double UTC timestamp of the samples position data 

lastcontact double UTC timestamp of last received signal from aircraft 

hour int UTC timestamp indicating the beginning of the hour to 
which the data belongs 

Table 3-1: Data table state_vectors_data4 (see [10]) 

 

Flights of the 20.06.2019 are used for the test-dataset, flights of all other days are used for training 
the TP module. 24410 flight plans were available from DDR2 database for the training-dataset and 
807 flight plans for the test-dataset. After gathering and parsing the ADS-B data with the described 
process, 23419 trajectories were obtained for the training-dataset and 771 trajectories for the test-
dataset. This indicates a loss of less than 5 % of parsed ADS-B trajectories compared to initially filed 
flight plans available from DDR2 database. Reasons may be aircraft filing a flight plan, but not being 
equipped with ADS-B, cancelled flights and gaps in received ADS-B data. Furthermore the ADS-B data 
parser automatically filters ADS-B data with too low resolution to build a sufficient trajectory. During 
the data processing step for generating training and test data suitable for the neural networks, some 
additional trajectories may be filtered out because of low data quality. The general quality of parsed 
trajectories can be described by the metrics reliability, completeness and plausibility calculated by 
the data parser. The reliability-metric indicates the mean reliability of the overall trajectory in the 
context of density of supporting samples contained in the raw ADS-B data: trajectory-parts with gaps 
(no received ADS-B data) are rated with a low reliability. The completeness-metric indicates whether 
the beginning and end of the trajectory are near a potential departure and arrival airport. The 
plausibility-metric describes whether the profile of barometric altitude is typical for a passenger 
aircraft. Histograms of the metrics of the gathered training-dataset are shown in Figure 4 and 
histograms of the metrics of test-dataset are shown in Figure 5. Table 3-2 lists the numbers of 
trajectories per aircraft type in training and test datasets.  
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Figure 4: ADS-B data metrics of training dataset 

 
Figure 5: ADS-B data metrics of test dataset 
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Type TRNG Test Type TRNG Test Type TRNG Test Type TRNG Test 

B738 7855 (255) E75S 73 (2) E75L 27 (1) PC24 5 (0) 
A320 4648 (149) CL60 72 (2) E195 23 (0) C55B 5 (0) 

A319 2672 (97) CL35 71 (5) CRJX 21 (1) GL7T 4 (0) 

A321 1399 (38) B736 70 (0) A35K 20 (1) A310 4 (0) 

A20N 970 (28) B733 70 (4) C525 19 (0) CRJ2 4 (0) 

B737 403 (13) GLF6 70 (1) FA8X 18 (1) C560 4 (0) 

E190 381 (12) BCS3 66 (4) C510 17 (2) BCS1 4 (0) 

A332 316 (9) E35L 62 (2) BE40 15 (0) GA5C 4 (0) 

B752 286 (18) FA7X 53 (2) B735 15 (2) E50P 4 (0) 

B789 276 (11) C25A 49 (1) GALX 14 (0) C650 3 (0) 

B788 269 (8) C68A 46 (1) C750 13 (0) FA10 3 (0) 

A333 257 (6) GLF4 45 (1) LJ75 13 (1) G280 3 (0) 

A21N 247 (8) GL5T 40 (1) A339 12 (0) B764 3 (1) 

B763 201 (4) F900 40 (0) C25B 12 (2) E545 3 (0) 

A318 194 (8) B762 37 (2) E170 11 (0) LJ40 2 (0) 

A388 187 (5) A343 37 (2) E550 11 (0) B78X 2 (0) 

B753 138 (5) B77L 34 (2) C25M 11 (0) P180 2 (1) 

B77W 131 (1) CL30 33 (1) PRM1 10 (0) A342 2 (0) 

GLEX 126 (4) B748 33 (2) H25B 9 (0) C550 2 (0) 

F2TH 125 (6) C680 32 (2) HDJT 8 (0) ASTR 1 (0) 

E55P 119 (8) A346 32 (1) G150 7 (0) LJ55 1 (1) 

GLF5 104 (1) LJ45 32 (3) FA50 7 (0) C551 1 (0) 

A359 103 (4) C25C 32 (0) MD11 7 (1) C700 1 (0) 

B772 95 (5) CRJ9 32 (0) A306 7 (0)    

C56X 92 (2) B739 30 (1) LJ35 6 (0)    

B744 80 (4) B734 29 (1) E135 6 (0)    

 
Table 3-2: List of aircraft types of training and test dataset 
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4 Development of Neural Networks 

The development of ML-TP module assesses fully connected feed-forward neural networks. Thereby 
adequate inputs and outputs are required to address a certain context contained in the training- and 
test-data. This functional context is to be modelled by the neural network. The general TP-idea of 
chapter 2 shall be part of this modelling-context. Due to the complexity of the envisaged TP-problem 
– with time-domain it’s a 4D problem – it needs to be simplified to be fed to and modelled by a 
simple feed-forward network. This simplification is done by neglecting the vertical plane and the 
temporal dimension in the first step. According to the problem definition (see chapter 2) the input of 
the neural network shall be the initially filed flight plan and the output shall contain information 
about the actually flown track of the aircraft. These inputs and outputs need to be designed properly 
to provide the most expressive data to the neural network during training to model the desired 
functional context. For each potential waypoint of the considered initial flight plans, an individual 
input-value will be foreseen, which indicates whether the waypoint is part of the actual inputted 
flight plan or not. Therefore the input-values can take two values: 0 in case the waypoint is not part 
of the flight plan and 1 when it is. This enables a simple way of using the neural network, as only a 
vector of [0, 1] values regarding the actual flight-plan is required to feed the neural network in 
operation. To limit the number of required input-values on the one hand, but to not lose essential 
input-information regarding the functional context to be modelled, the considered waypoints for the 
input vector are determined with an iteratively set radius of 400 𝑁𝑀 around the airspace to be used. 
This means, that all official waypoints spatially laying within this 400 𝑁𝑀 radius-area are part of the 
input-vector with one dedicated value being 0 or 1. To gather the list of these considered waypoints 
the DDR2 flight plans of training and test datasets were consulted. After all a total number of 2135 
waypoints were collected. Airports and flight-individual technical waypoints, such as top of climb, 
etc., were not considered for the input of the neural network. This is because departure and arrival 
airports may lie out of the 400 𝑁𝑀 area and technical waypoints would further increase the already 
huge input-vector to the neural network.  

Contrary to the spatially differentiated DDR2-waypoints, the considered output-information to be 
modelled, the ADS-B track, is much more detailed and individual, as no commonly used official 
positions apply here, like with the waypoints of the flight plans. To obtain an adequate 
representation of this desired output-information within a comparable scale of number of values 
regarding the input-vector and by keeping or even sharpen the contextual functionality (route directs 
and changes between flight plan and final track) to be modelled, the individual positions of ADS-B 
samples will be mapped to a static list of predefined waypoints. This is done by calculating a 
waypoint-overfly probability for each of the static predefined waypoints regarding the finally flown 
trajectory represented by the ADS-B data. The waypoint-overfly probability value 𝛿 assesses whether 
the aircraft is passing or overflying the dedicated waypoint within a 10 𝑁𝑀 range. It is calculated for 
each trajectory 𝑖 and waypoint 𝑗 with the pass-distance 𝑑𝑝𝑎𝑠𝑠,𝑖,𝑗:  

𝛿𝑗,𝑖 = {

0 𝑖𝑓 𝑑𝑝𝑎𝑠𝑠,𝑖,𝑗 ≥ 10 𝑁𝑀

1 −
𝑑𝑝𝑎𝑠𝑠,𝑖,𝑗

10 𝑁𝑀
𝑒𝑙𝑠𝑒

 

The probability values range from 0 to 1. A graphical example is shown in Figure 6. The blueish 
markers represent the waypoint probability values. These markers are also used to graphically 
represent the outputs of the designed neural networks. During the development and test of various 
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neural networks, described in the following chapters, unavoidable shortcomings were observed, 
which appear in lower waypoint probabilities during testing (and operation) of the networks. These 
lower probability values result in low saturations within graphical representations. Therefore the 
outputs of neural networks are post-processed by applying the square-root and two thresholds:  

𝛿𝑗̅,𝑖 =

{
  
 

  
 0 𝑖𝑓 √𝛿𝑖,𝑗 < 0.2

1 𝑖𝑓 √𝛿𝑖,𝑗 ≥ 0.4

√𝛿𝑖,𝑗 𝑒𝑙𝑠𝑒

 

Figure 6 depicts a comparison between the original and the post-processed probability values. This 
post-processing of output-values is only conducted for graphical representations. For further 
processing of the data, e.g. the position prediction in chapter 5, no such rework of the values is 
carried out.  

 

Figure 6: Comparison of rendering of neural networks waypoint probability-values  
(left: without post-processing, right: with post-processing) 

 

4.1 Neural Network with official waypoints output 

The first approach to predict re-routings and route-changes on flight plan level was to use the official 
waypoints lying within the considered geographical area for input values as well as for the output 
values. Hence the vector-length of in- and output and the corresponding waypoints are equal. The 
only difference is the kind of value calculation for in- and outputs (see chapter 4). The idea is to 
identify skipped waypoints of the initial flight plan and to indicate other waypoints, which have been 
overflown but are not part of the filed flight plan. This can be observed in the example in Figure 7. It 
depicts the output of a neural network with one hidden layer with 100 sigmoid neurons, which was 
trained with the Adagrd-algorithm and the mean absolute error as error-function. 40 epochs of the 
training dataset have been trained with a batch-size of 1. The final mean absolute error of the 
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trained network was 0.0158 regarding the training dataset and it is the best result achieved in all 
network- and training-developments iteratively conducted with official waypoints as in- and output.  

 

Figure 7: Example of waypoint probability with flight plan- waypoints as neural network output 

During the assessment of the results of the test-dataset some trajectories with major errors in the 
prediction of the neural network were observed. These errors comprise generally false probability-
values (an example is shown in Figure 8) and missing information or gaps in some geographical 
regions (see Figure 9). Even though the neural network would perfectly model the true track of the 
aircraft, the unequal distribution of flight plan waypoints (which are used for the output-values) has 
the effect of inhomogeneous prediction precisions: In regions with a low density of considered 
waypoints, the prediction precision is generally lower, especially if additional errors in the modelling 
of the neural network occur. The general idea of the approach was to identify single waypoints of the 
initial flight plan, which have been skipped during the flight. But the aforementioned shortcomings 
make it much more difficult or even impossible to derive such information from the output of the 
neural network.  
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Figure 8: Example of erroneous waypoint probability predictions  
(flight plan waypoints used for output-values) 

 

Figure 9: Example of a flight with a region with a gap in the waypoint probability prediction  
(flight plan waypoints used for output-values) 

errors 

information gap 
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4.2 Neural Network with waypoints-grid output 

To improve the waypoint probability prediction, especially regarding the precision of prediction 
resulting from the distribution of the output-waypoints, a generic waypoint grid with homogeneous 
distribution was tested as output of the neural network. This grid was spread over the considered 
airspace of Switzerland with an approximately waypoint-distance of 10 𝑁𝑀, resulting in a grid of 
20𝑥20 waypoints. The waypoint-distance of 10 𝑁𝑀 is derived from the waypoint probability 
calculation introduced in chapter 4. If the true track is passing the middle of two grid-waypoints, 
each waypoint then will take a probability value of 0.5. A network with one hidden layer composed 
of 100 sigmoid neurons was observed to show the best results regarding modelling accuracy and 
training- and operational calculation effort. The input-vector is the same like the neural network in 
chapter 4.1 (2135 waypoint values, range: [0; 1]). The output vector will be composed of the 400 
grid-waypoint probability values. An example with adequate results regarding the modelling of 
route-changes is depicted in Figure 10. The waypoint-probabilities, which are calculated by the 
neural network with the flight plan as input, neatly follow the true track of the aircraft.  

 

Figure 10: Example of track prediction with neural network  
(waypoint-grid used for output values) 

The shortcomings observed in the results of the neural network of chapter 4.1 also appear in the 
results of this neural network, but with lower severity. It is assumed, that the smaller geographical 
region and higher density of output-waypoints facilitates a more detailed modelling of the functional 
correlations between the flight plans and true tracks. Beneath the lower informational complexity to 
model by the neural network, this can also be explained with the composition of the training and test 
datasets. These have been composed with the trajectories crossing the considered airspace above 
Switzerland, which results in a higher informational density in this region, than in the regions around 
(see test dataset in Figure 11 as an example).  
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Figure 11: Trajectories of test dataset 

 

4.3 Neural Network with waypoints-grid output and additional 
input data 

The neural network to predict aircraft-tracks in chapter 4.2 is only using static and discrete position 
data without any temporal information. Also the direction of the trajectories is not explicitly 
indicated within the input-vector, because the waypoints are only marked as part of the flight plan 
with no information about the sequential order. Additional tests with adapted neural networks have 
been conducted to test, whether the provision of temporal information and information about the 
direction of the flights have beneficial effects on the results of the neural network. Thereby the 
output-vector and probability-value calculation of chapter 4.2 are kept, which facilitates a 
comparison of the neural networks with the mean absolute error of the output during training. To 
add the temporal information to the input-vector, each waypoint is assigned a second value, 
indicating the time of the day of passing the dedicated waypoint according to the flight plan. This 
timestamp-value ranges from 0 to 1 according to 12 𝑎𝑚 and 12 𝑝𝑚. The timestamp-values of all 
waypoints not part of the flight plan also take 0 as a value. In the second approach the mean course 
Ψ̅ of the flights was added as a single scalar value to the input-vector of the neural network. This 
value ranges from 0 to 2𝜋 according to the radian angle (0: north, 𝜋: south). It is calculated with the 
starting and ending course on a virtual orthodrome between the departure and arrival position:  

Ψ̅ =
Ψ𝑎𝑟𝑟_𝑑𝑒𝑝 +Ψ𝑑𝑒𝑝_𝑎𝑟𝑟

2
 

The final mean absolute error of all trained networks is shown in Table 4-1. Although the mean 
absolute error of the neural network with the timestamp-data is slightly smaller, the difference is 

high information  
density 

low information density 
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within the scope of the stochastic processes during initialization and training of the neural networks. 
After all, the additional input values had no relevant beneficial effect on the training of the neural 
network. Therefore the neural network with no additional input than the flight plan will be used in 
the AISA project.  

network input mean absolute error 

no additional input 
(only flight plan) 

0.0333 

with waypoint timestamps 
(for each input-waypoint) 

0.0332 

with departure-arrival course 
(only one scalar value) 

0.0339 

Table 4-1: Final mean absolute errors of trained neural networks 
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5 Position prediction with current aircraft 
state 

The neural network developed in chapter 4.2 is modelling the aircraft-track without any information 
in the time-domain. To predict the future position as a function of the current aircraft state during 
the flight, the waypoint probability grid is combined with an aircraft-fixed pattern (see Figure 12). 
This pattern indicates the possible area of the future position of the aircraft in a distance of 100 𝑁𝑀. 
The lower radius is set to 80 𝑁𝑀 and the higher radius is set to 120 𝑁𝑀, according to a 
consideration-width of 40 𝑁𝑀. To respect potential turns in the future track, the pattern has an 
opening-angle of 110 °. The predicted future position is calculated by the weighted mean of all 
waypoint probability-values laying in the aircraft pattern. An example is shown in Figure 13. Besides 
the advantage of providing a concrete position prediction, the calculation of the weighted mean is 
also smoothing the granular track prediction of the neural network and therefore increasing the 
precision of the position prediction.  

 

Figure 12: Position prediction with grid-waypoint probabilities and aircraft pattern 

Because of the fixed distance of 100 𝑁𝑀 of the middle of the aircraft pattern, the predicted position 
is assumed to be a distant-fixed prediction without any dependence on the aircrafts speed and with 
no temporal information. A timestamp of the predicted position may be calculated with the distance 
and the aircrafts speed. Thereby the duration till the predicted position may vary, depending on the 
concrete position prediction with the weighted mean and especially depending on the speed of the 
aircraft. Tests with the ground-speed obtained from the ADS-B track indicated severe noise in the 
calculation of prediction-timestamps. Although the ADS-B track was partly already softened with the 
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ADS-B data parser, some trajectories comprise noisy spatiotemporal samples, which result in noisy 
ground-speed calculations and therefore noisy prediction-timestamps.  

After calculating the predicted future position with the weighted mean of probability values, the 
highest probability value in the vicinity of the predicted position with a maximal distance of 40 𝑁𝑀 is 
selected as a metric for the reliability of the predicted position itself. Also an average-calculation of 
all probability values with a maximal distance of 40 𝑁𝑀 was assessed for this metric. But in this case 
undesirable effects would be rewarded in the metric: a precise track-prediction of the neural 
network with a narrow track in the waypoint-probabilities would dilute the reliability-metric, 
whereas a broad track-prediction would erroneously be rewarded with the average calculation. 
Because of the relative large consideration area with a radius of 40 𝑁𝑀 the metric can only be used 
as a first approach regarding the reliability of the prediction.  

 

Figure 13: Example of position prediction with grid-waypoint probabilities and aircraft pattern 

A predicted aircraft altitude is obtained in a separate process by mapping the planned waypoint-
altitudes of the flight plan to the predicted position and by correcting this value with the latest 
known error-offset of the altitude prediction. The mapping of the planned flight plans altitudes to the 
previously predicted position is done by calculating the distance-weighted average of the altitudes of 
the two flight plan waypoints lying nearest to the predicted position. Afterwards the obtained 
altitude is corrected with the latest known error-offset. The error-offset is defined by the difference 
between the planned altitude and the finally flown altitude, when passing the timestamp of the 
predicted position. This means, that the error-offset is earliest available when the aircraft passes the 
predicted position timestamp itself. Therefore the latest known error-offset is used to correct the 
predicted position. This procedure is depicted in Figure 14.  
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Figure 14: Altitude prediction with correction offsets 𝚫𝒉 
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6 Validation of final Trajectory Prediction 

The results of the trajectory prediction of the combination of the neural network of chapter 4.2 with 
the position prediction method in chapter 5 are assessed. To obtain a dataset with predicted 
trajectory positions, the positions of all trajectories of the test-dataset are predicted for every 30 
second. In case the aircraft pattern lies beyond the waypoints-grid or all probability values of the 
selected waypoints of the waypoints-grid are zero, no position prediction is possible. These cases are 
not further tracked in the validation-dataset. Figure 15 depicts the distribution of reliability-metrics 
of the position predictions of this dataset. About 6000 position predictions have a reliability value of 
less than 0.1. Only a low number of predicted positions has a value between 0.1 and 0.4, whereas 
the number of predicted positions is increasing with higher reliability values than 0.4. Figure 16 
depicts a histogram of the correctness of all predicted positions with a reliability-metric greater or 
equal to 0.4 and Figure 17 summarizes the distribution of deviations of predicted positions with a 
reliability-metric lower or equal to 0.1. Both histograms underline the idea of the reliability-metric: 
The distribution of deviations with a high reliability-value have a maximum at 0 to 2.7 𝑁𝑀, whereas 
predicted positions with low reliability-values in general comprise higher deviations to the true 
future position (maximum at 65 to 75 𝑁𝑀). Nevertheless do the histograms also show, that the 
introduced reliability-metric is only a first approach to the reliability of the predicted position, like 
stated in chapter 5, as there are also some position predictions with a high reliability-value but high 
position deviation and vice versa.  
The predicted altitudes have a mean absolute deviation of 1228 𝑓𝑡. to the finally flown altitude 
levels. The histogram in Figure 18 indicates that most predicted altitudes have a deviation near to 
zero and some predicted altitudes comprise major deviations of thousands of feet, resulting in the 
relatively high mean absolute deviation.  

Incorrect future position predictions generally can have two main sources. Either the predicted track 
of the neural network may be inadequate or the position prediction method with the aircraft pattern 
may be erroneous. Although the track prediction with the neural network could have any shape as 
output, the plotted waypoint probability values generally have the shape of a straight corridor, which 
is the desired output to predict the track. Besides general differences in the predicted track and the 
true track, especially two different kinds of failures have been observed. The first modelling-failure 
comprises misleading predictions with no route changes regarding the flight plan, whereby finally 
route changes have been applied during the flight (Figure 19). The second failure category comprises 
predictions with route changes by the neural network, but no re-routings in the final flight trajectory 
(Figure 20). Figure 21 depicts an example of a predicted aircraft track, which adequately indicates 
route changes regarding the initial flight plan. Prediction errors within the aircraft pattern method 
especially arise in the border areas of the waypoints-grid. In situations where the true future position 
of the aircraft is slightly outside the grid, only parts of the aircraft pattern may cover the grid-area, 
see Figure 22 and Figure 23. Then also low waypoint probability-values may strongly impair the 
predicted future position by the weighted mean calculation. It is assumed, that especially this effect 
is responsible for the large position deviations shown in the histograms.  
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Figure 15: Histogram of reliability-metrics of position predictions (test-dataset) 

 
Figure 16: Histogram of predicted positions deviations (regarding true position)  

with a reliability value ≥ 𝟎. 𝟒 
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Figure 17: Histogram of predicted positions deviations (regarding true position)  

with a reliability value ≤ 𝟎. 𝟏 

 
Figure 18: Histogram of predicted altitude deviations (regarding true altitude) 



4D TRAJECTORY PREDICTION MODULE 

 

  

 

 

 31 
 

 

 

 

Figure 19: Track prediction failure (false negative route change) 

 

Figure 20: Track prediction failure (false positive route change) 
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Figure 21: Adequate route change prediction 

 

Figure 22: Position prediction error of entering aircraft 
 reliability value: 𝟎. 𝟖𝟒 
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Figure 23: Position prediction error of exiting aircraft 
 reliability value: 𝟎. 𝟎𝟎𝟐𝟕 
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7 Conclusion 

A two-step trajectory prediction method has been developed. At first a neural network is predicting a 
granular static track of the flights. Thereby no temporal information about the track-position is 
provided and the filed flight plans comprise the input of the neural network. Because of the static 
approach with minimal requirements regarding the input, this step of the prediction can be 
conducted as soon as the initial flight plan is known and with any flight plan, which waypoints were 
parts of the input-vector during training. But it needs to be respected, that flight plans, which have 
similar trajectories in the training dataset, probably obtain much better prediction results than flight 
plans, which haven’t been trained. During the development of the first trajectory prediction step, 
also timestamp information about the crossing of flight plan waypoints and the direction of the 
flights have been considered as input. But with the analysed settings no considerable benefits in the 
modelling of the aircraft tracks were observed. The flight plan waypoints used for the neural network 
input had also been considered for the output of the neural network. But it emerges, that a higher 
output waypoint density is required, to gather considerable information about the predicted track in 
the considered area. Therefore a waypoints-grid with 20𝑥20 waypoints was finally applied. As the 
dimension of the neural networks output-vector is connected to the waypoints-grid size, larger 
synthetic waypoint-grids regarding the number of waypoints would result in a larger neural network 
output-vector and therefore a more complex neural network itself.  

In the second step of the trajectory prediction, the actual aircraft state in combination with an 
aircraft-fixed pattern is used to predict a concrete position in a distance of 100 𝑁𝑀 with the 
beforehand predicted aircraft track as input. As this step requires the actual aircraft position and 
track-angle as input, it is a dynamic part of the trajectory prediction and needs to be conducted 
during the operation of the flight. ADS-B data may be used to obtain the actual aircraft state during 
operation. If the actual ground-speed is known, also a timestamp of passing the predicted future 
position may be calculated. Despite previous filtering, the ground speed obtained from the ADS-B 
data turned out to be noisy for some aircraft. Therefore also the prediction timestamps of these 
flights would be noisy and the distance parameter of 100 𝑁𝑀 was used in the validation of the final 
trajectory prediction. The altitude is predicted by mapping the flight plans altitude levels to the 
predicted position and correcting it with the latest known prediction error.  

Validation indicated the prediction reliability-metric, which is obtained in the second part of the 
trajectory prediction, to be an initial indicator about the reliability of the predicted positions. But it 
needs to be respected, that there may be position predictions with a high reliability-value but a high 
deviation regarding the true future position and vice versa. Although many predictions have a 
position deviation of less than 6 𝑁𝑀, a considerable amount of predictions have a deviation of more 
than 11 𝑁𝑀 regarding the true future position, especially for predictions with a reliability-metric 
lower than 0.1. These greater prediction deviations, which can grow up to 140 𝑁𝑀, presumably 
especially arise from prediction errors of the second part of the trajectory prediction in the border 
areas of the waypoints-grid. An assessment of the distance from the actual aircraft state to the 
predicted position may indicate deviations from the intended prediction-radius of 100 𝑁𝑀 and 
therefore it could probably be used to identify these prediction errors in the border-area of the 
waypoints-grid. This is where the upcoming research modules of AISA may take over to assess the 
results of the trajectory prediction and the other machine learning modules (conflict detection 
module and airspace complexity module).  
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